SYLLABUS

Title:	Nanotechnology in Space Engineering					
Degree of study:	II (Master), III (PhD)					
Field of study, specialty:	Any engineering s	pecialty				
Code:		Semester: Nur		Number of ECTS: 3		
Level of the subject: intermediate	te Type of the subject: elective			ive		
	Lectures:	20 h				
Hourse 60 h	Practice: 0	h	Individual work: 15 h			
Hours: 60 h	Labs: 15 h					
	Consultations: 10 h					
Responsible for the subject:	ponsible for the subject: dr hab. Natalia Kizilova					
Objectives of the course						
C1. Teaching the basics of nanome	chanics, nanofluic	lics and nanotribo	logy.			
C2. Acquainting with micro / nano	-structured materi	ials for aviation en	gineering	J.		
C3. Acquaintance with space satel	lites and principles	s of motion: from	macro to	nano-avionics.		
Prerequisites for knowledge, skill	s and other comp	etences				
1. Basic knowledge of theoretical r	mechanics, mecha	nics of deformable	e solids, f	luid mechanics.		
2. Basic knowledge: aerodynamics	, space engineerin	g, propulsion prin	ciples.			
Learning outcomes (knowledge)						
EW1 - The student understands th	e basics and equat	tions of nanomech	nanics of o	deformable solids.		
EW2- The student understands the	e basics and equat	ions of micro / nai	nofluidics	i.		
EW3 - The student understands th	e basics and equat	tions of micro / na	notribolo	ogy.		
EW4- The student distinguishes th	e principles of pro	pulsion, movemer	nt and res	sistance of drones, space		
satellites.						
EW5- The student knows the basic	concepts and law	s for nanofluidic c	levices.			
Learning outcomes (skills)						
EU1 - The student is able to solve	the problems of m	icro / nanomecha	nics of de	formable solids in space		
engineering.						
EU2- The student is able to solve t	he problems of the	e mechanics of mi	cro / nan	oliquids in space		
engineering.						
EU3- The student is able to solve t	he problems of mo	otion, resistance a	nd contro	ol in space engineering.		
EU4- The student is able to constru	uct micro / nano-s	tructured materia	ls for avia	ation engineering.		
EU5- The student is able to solve t	he problems of mi	cro / nano thermo	omechani	cs in space engineering.		
Course content						
	Lectures			Number of hours		
Fundamentals of nanomechanics,	nanofluidics and n	anotribology		4		
Autonomous flight systems and ur	nderwater systems	: principles, types	and	2		
experimental data				۷		
Spacecraft and propulsion principl	es: from macro to	nano-avionics (Po	cketQub	es, o		
Sun Cubes, TubeSats)	Z					
Nanostructured materials for aero	2					
Nano-scale motors, controllers, he	2					
Nanofluidic devices for sample har	2					
Large constellations of nanosatellites: problems and immediate prospects						
Laboratories						
Solving the problems of micro / na	2					
Solving the problems of micro / na	4					

Solving the problems of micro / nanoavionics aerodynamics	4
Solving the problems of micro / nanotribology	1
Construction of nanostructured materials for aerospace engineering	1
Solving the problems of micro / nano thermomechanics	3

Basic and supplementary literature

. .

1. Publicly accessible teaching materials.

2. Materials on the website of the faculty prepared by the teacher.

Student's workload					
Form of activity	Average numer of hours				
Contact hours with the teacher (classes)	30				
Contact hours with the teacher (consultations)	10				
Homework – projects	10				
SUM	50				

Teaching tools

. .

. .

1. Lectures in the form of presentations in PDF format.

2. The content of the lectures and laboratory tasks in the form of files (PDF).

3. Individualized calculation projects for independent solution.

4. Access to the website of the subject, the repository of the subject on the GitHub portal and laboratory instructions.

Assessment methods (F - forming, P - summative)

Fd1-Fd2 - grades from homework,

FI1-FI5 - grades from laboratory exercises,

FI - evaluation from the laboratory test,

Work during laboratory classes and individual or group project presented during classes are assessed.

Details of the grading system published on the course website.

Realization of learning outcomes

Learning outcome	Effects defined for the whole program	Objectives of the course	Teaching tools	Estimation method
EW1		C1,C2	Lecture, independent work in laboratories and project preparation	Mark 2-5 or a descriptive estimation
EW2		C3		As above
EW3		C2,C3		As above
EW4		C1,C2,C3		As above
EU1		C1,C3		As above
EU2		C1,C2		As above
EU3		C2,C3		As above
EU4		C1,C2		As above